-40%

Deltec, DC Shunt, 500A 50MV, Whizbang Jr, Midnite Solar, Bogart, etc.

$ 22.17

Availability: 100 in stock
  • MPN: MKBM C 708
  • Custom Bundle: No
  • Current Output: 50mV
  • Model: MKBM
  • All returns accepted: Returns Accepted
  • Type: DC SHUNT
  • Condition: New
  • Application: Automotive
  • Color: Black
  • Connector Type: Screw
  • Item must be returned within: 30 Days
  • Current Rating: 451-500 A
  • Current Type: DC
  • Return shipping will be paid by: Seller
  • Brand: Deltec
  • Refund will be given as: Money Back
  • Restocking Fee: No

    Description

    First, And this is important.
    I have been selling on eBay for over 20 years and have had no Negative reviews. ALWAYS POSITIVE.
    Any item may be returned within 30 days after delivery.
    If you have any issue with one of these send it back for a refund, I’ll even eat the shipping.
    These are brand new old st
    ock purchased in bulk and stored in parts bin. Many uses for PV systems but also for general electronics.
    Deltec SHUNT 500A/50MV
    What is a shunt?
    A shunt is a very small, accurately-known, low resistance resistor used to measure current. Meters & Battery Monitors use shunts to measure amps and amp-hours. The shunt is placed in series with the load so that it can measure the current flowing through it. Because the resistance is known, the current be calculated based on measuring the voltage drop across the shunt.
    For loads less than 70 amps, use the 100A, 100mV Shunt for Current Monitoring Meters. The 500A, 50mV Shunt for Current Monitoring Meters is recommended for loads up to 400 amps. For larger loads that will not exceed 900 amps, use the Bogart Engineering 1000A, 100mV Shunt.
    50mV/500amp Has two 8-32 tapped holes on each end to attach a bus bar. This is the industry standard shunt. Can be connect directly to a Midnite Solar Whiz Bang Jr .
    SPECIFICATIONS:
    Resistance:
    "500 Amp at 50 millivolts", or 0.1 milliohm.
    Max. steady state current, amps:
    410 Amperes
    Thermal time constant:
    18 minutes
    Overload current:
    If normally operated at less than 300 amps, it will take overloads to 500 amps for durations of less than 5 minutes.
    Physical characteristics:
    Has a plastic base 3.25 x 1.75 in. with two mounting holes .205 "dia, 1.25" apart o.c. 1.75 inches overall height. High current connections are made to two bolts (3/8"-16) which are 1.50 in. apart (o.c).
    HOW A SHUNT WORKS
    A shunt is necessary in order to measure amps and amp-hours with the TriMetric battery monitor. A shunt is an accurate, very low resistance resistor which is placed "in line" with the wire carrying the current to be measured. With the TriMetric, it is usually placed in the negative wire from the battery bank, such that all the current going into the battery (charging) or out (discharging) must pass through it. Connected in this way it will be set up to monitor "net" amp-hours in and out of the battery. (It also could be placed in series with the negative wire coming from a solar array--or other charging source--in which case it would measure only the solar array current, if that were desired--to show total solar "amp hours" production.) The shunt needs to be placed near the batteries; since these wires carry very high currents the wires from the batteries must be kept short to minimize electrical losses.
    SHUNT RESISTANCE
    When current flows through the shunt, a small voltage is developed across the shunt which is proportional to the current flow. The TriMetric battery monitor accurately measures this very low voltage and converts it to the "amps" reading on the meter. The resistance, which is the ratio between the voltage across the shunt and the current flowing through it, is a constant for any particular shunt--and is one of its important parameters. For most substances, resistance is usually described in "ohms", however for some reason shunts are described by the voltage drop that occurs with a certain current: for example: "50 millivolts at 500 amperes." However the meter only cares about the ratio-which is the resistance--so a 500Amp/50 millivolt shunt is equivalent, from the TriMetric's view, to a 250Amp/25 millivolt shunt. They both have a resistance of 0.1 milliohm, or one ten thousandth of an ohm.
    HOW TO SET A SHUNT UP CORRECTLY
    The TriMetric is designed to use either a 500 Amp/50 millivolt (0.1 milliohm) or 100 Amp/100 millivolt (1.0 milliohm) shunt. The latter shunt delivers 10 times the voltage for a given current flow through the shunt, so the meter can show an extra digit of current resolution (down to 0.01 amp) compared with the 500 Amp/50 millivolt shunt, which displays a minimum current of 0.1 amp. To make the TriMetric read "amps" and "amp-hours" correctly, you must tell the TriMetric which shunt is being used. This is done by programming either an "L" (low) or "H" (high) in one of the program modes. ("L" for the 100A/100 mV shunt, and "H" for the 500 A/50 mV shunt.) For how to do this refer to TriMetric instructions under "How to set efficiency factor and shunt type".
    Source: Bogart Engineering